skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nekrasov, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Ward Hunt and Milne ice shelves are the present-day remnants of a much larger ice shelf that once fringed the coast of Ellesmere Island, Canada. These ice shelves possess a unique surface morphology consisting of wave-like rolls that run parallel to the shoreline. Setting aside the question of how these rolls originally developed, we consider the impact of this roll morphology on the stability of the ice shelf. In particular, we examine whether periodic variations in ice-shelf thickness and water depth implied by the rolls prevent the excitation of Lamb waves in the ice shelf. Using a hierarchy of numerical models, we find that there are band gaps in the flexural and extensional modes of the ice shelf, implying the existence of frequency ranges that lack wave motion. We show that an ice shelf with rolls is able to reflect waves in these frequency ranges that are incident upon its ice front, thereby mitigating undue stress and calving. We speculate that the roll morphology provides a “fitness” for survival that explains why rolls are observed in the oldest and thickest multiyear sea ice of the Arctic. 
    more » « less